Hyperbolic Beta Integrals

نویسنده

  • JASPER V. STOKMAN
چکیده

Hyperbolic beta integrals are analogues of Euler’s beta integral in which the role of Euler’s gamma function is taken over by Ruijsenaars’ hyperbolic gamma function. They may be viewed as (q, q̃ )-bibasic analogues of the beta integral in which the two bases q and q̃ are interrelated by modular inversion, and they entail q-analogues of the beta integral for |q| = 1. The integrals under consideration are the hyperbolic analogues of the Ramanujan integral, the Askey-Wilson integral and the Nassrallah-Rahman integral. We show that the hyperbolic Nassrallah-Rahman integral is a formal limit case of Spiridonov’s elliptic Nassrallah-Rahman integral.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J an 2 00 4 HYPERBOLIC BETA INTEGRALS

Hyperbolic beta integrals are analogues of Euler’s beta integral in which the role of Euler’s gamma function is taken over by Ruijsenaars’ hyperbolic gamma function. They may be viewed as (q, q̃ )-bibasic analogues of the beta integral in which the two bases q and q̃ are interrelated by modular inversion, and they entail q-analogues of the beta integral for |q| = 1. The integrals under considerat...

متن کامل

ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.

متن کامل

Evaluation of Singular Integrals by Hyperbolic Tangent Based Transformations

We employ a hyperbolic tangent function to construct nonlinear transformations which are useful in numerical evaluation of weakly singular integrals and Cauchy principal value integrals. Results of numerical implementation based on the standard Gauss quadrature rule show that the present transformations are available for the singular integrals and, in some cases, give much better approximations...

متن کامل

On characterizations of hyperbolic harmonic Bloch and Besov spaces

‎We define hyperbolic harmonic $omega$-$alpha$-Bloch space‎ ‎$mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}‎},$$ where $0leq gammaleq 1$‎. ‎Similar results are extended to‎ ‎little $omega$-$alpha$-Bloch and Besov spaces‎. ‎These obtained‎...

متن کامل

Limits of elliptic hypergeometric integrals

In [16], the author proved a number of multivariate elliptic hypergeometric integrals. The purpose of the present note is to explore more carefully the various limiting cases (hyperbolic, trigonometric, rational, and classical) that exist. In particular, we show (using some new estimates of generalized gamma functions) that the hyperbolic integrals (previously treated as purely formal limits) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003